By Topic

Distributional Similarity Model for Multi-modality Clustering in Social Media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Donahue C. M. Sze ; Hong Kong Polytech. Univ., Hong Kong ; Tak-chung Fu ; Fu-lai Chung ; Robert W. P. Luk

User generated content (UGC) has become the fastest growing sector of the WWW. Data mining from UGC presents challenges not typically found in text mining from documents. UGC can be semi-structured and its content can be very short and informal, containing relatively little content similar to a chat or an email conversation. In addition UGC can be viewed as a multi-modality data. These characteristics pose big challenges and research questions for scholars to cope with. To cluster UGC data, we can construct multiple contingency tables of modalities and employ the multi-way distributional clustering (MDC) algorithm. However, by considering a contingency table which summarizes the co-occurrence statistics of two modalities, it is not robust to represent the information entropy between two modalities in UGC data. In this paper, we propose a novel similarity measurement, called distributional similarity model (DSM), to solidify the graph model in the MDC algorithm to deal with the unique characteristics of the UGC data.

Published in:

Web Intelligence and Intelligent Agent Technology Workshops, 2007 IEEE/WIC/ACM International Conferences on

Date of Conference:

5-12 Nov. 2007