Cart (Loading....) | Create Account
Close category search window
 

Implementing the conjugate gradient algorithm on multi-core systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In linear solvers, like the conjugate gradient algorithm, sparse-matrix vector multiplication is an important kernel. Due to the sparseness of the matrices, the solver runs relatively slow. For digital optical tomography (DOT), a large set of linear equations have to be solved which currently takes in the order of hours on desktop computers. Our goal was to speed up the conjugate gradient solver. In this paper we present the results of applying multiple optimization techniques and exploiting multi-core solutions offered by two recently introduced architectures: Intel's Woodcrest general purpose processor and NVIDIA's G80 graphical processing unit. Using these techniques for these architectures, a speedup of a factor three has been achieved.

Published in:

System-on-Chip, 2007 International Symposium on

Date of Conference:

20-21 Nov. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.