Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Fundamental Schemes for Efficient Unconditionally Stable Implicit Finite-Difference Time-Domain Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Eng Leong Tan ; Nanyang Technol. Univ., Singapore

Generalized formulations of fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain (FDTD) methods are presented. The fundamental schemes constitute a family of implicit schemes that feature similar fundamental updating structures, which are in simplest forms with most efficient right-hand sides. The formulations of fundamental schemes are presented in terms of generalized matrix operator equations pertaining to some classical splitting formulae, including those of alternating direction implicit, locally one-dimensional and split-step schemes. To provide further insights into the implications and significance of fundamental schemes, the analyses are also extended to many other schemes with distinctive splitting formulae. Detailed algorithms are described for new efficient implementations of the unconditionally stable implicit FDTD methods based on the fundamental schemes. A comparative study of various implicit schemes in their original and new implementations is carried out, which includes comparisons of their computation costs and efficiency gains.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:56 ,  Issue: 1 )