By Topic

Design of Ultrawideband Planar Monopole Antennas of Circular and Elliptical Shape

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Amin M. Abbosh ; Queensland Univ., Brisbane ; Marek E. Bialkowski

An efficient approach is described for designing ultrawideband (UWB) antennas in the form of planar monopoles of elliptical and circular shape. To avoid the time consuming trial-and-error approach presented in other works, simple design formulas for this type of radiators are described and their validity is tested via electromagnetic analysis and measurements. Full electromagnetic wave investigations are performed assuming three types of substrates with wide range of dielectric constant and thickness. The presented results show that the proposed method can be applied directly to design planar antennas that cover the ultrawide frequency band from 3.1 GHz to more than 10.6 GHz. Four types of monopole antennas were manufactured using RT6010LM substrate and their operation was tested in terms of return loss, radiation pattern characteristics, gain, and time domain response. The developed antennas feature UWB behavior with near omnidirectional characteristics and good radiation efficiency. The time domain transmission tests between two identical elements show that the manufactured circular monopoles offer better performance in terms of distortionless pulse transmission than their elliptically shaped counter parts. These antennas are also assessed in terms of fidelity factor. The manufactured antennas show a high fidelity factor which is more than 90% for the face-to-face orientation.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:56 ,  Issue: 1 )