By Topic

Thermosonic Wire Bonding Process Simulation and Bond Pad Over Active Stress Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yong Liu ; Fairchild Semicond. Corp., South Portland, ME ; Scott Irving ; Timwah Luk

In this paper, a transient nonlinear dynamic finite element framework is developed, which integrates the wire bonding process and the silicon devices under bond pad. Two major areas are addressed: one is the impact of assembly 1st wire bonding process and another one is the impact of device layout below the bond pad. Simulation includes the ultrasonic transient dynamic bonding process and the stress wave transferred to bond pad device and silicon in the 1st bond. The Pierce strain rate dependent model is introduced to model the impact stain hardening effect. Ultrasonic amplitude and frequency are studied and discussed for the bonding process. In addition, different layouts of device metallization under bond pad are analyzed and discussed for the efforts to reduce the dynamic impact response of the bond pad over active design. Modeling discloses the stress and deformation impacts to both wire bonding and pad below device with strain rate, different ultrasonic amplitudes and frequencies, different friction coefficients, as well as different bond pad thickness and device layout under pad. The residual stress, after cooling down to a lower temperature, is discussed for the impact of substrate temperature.

Published in:

IEEE Transactions on Electronics Packaging Manufacturing  (Volume:31 ,  Issue: 1 )