By Topic

Generating B-Scans of the Environment With a Conventional Sonar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kuc, R. ; Yale Univ., New Haven

This paper examines the task of displaying more information about the environment using a conventional ranging sonar than is available in standard time-of-flight (TOF) maps. A conventional ranging sonar forms an environmental image that displays the information in the echo envelope, similar to a medical ultrasound image. The sonar performs rotational sector scans of simple objects and two complex environments containing various reflecting structures. In acquiring sonar data, we repeatedly reset the conventional sonar to generate a point process whose density relates to the echo amplitude. This point process is displayed as a grayscale image, called a brightness scan (B-scan), analogous to B-scans in medical ultrasound. We compare the information content of sonar B-scans to TOF maps for object classification and show B-scans to be richer. B-scan textures produced by rough surfaces and volumes containing random scatterers exhibit statistical invariance, similar to some organs within the body, suggesting the feasibility of automated classification. Image artifacts and means for their identification are discussed. The qualitative information present in sonar B-scans should lead to improved quantitative techniques for classifying objects.

Published in:

Sensors Journal, IEEE  (Volume:8 ,  Issue: 2 )