By Topic

Finding Event-Relevant Content from the Web Using a Near-Duplicate Detection Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In online resources, such as news and weblogs, authors often extract articles, embed content, and comment on existing articles related to a popular event. Therefore, it is useful if authors can check whether two or more articles share common parts for further analysis, such as cocitation analysis and search result improvement. If articles do have parts in common, we say the content of such articles is event-relevant. Conventional text classification methods classify a complete document into categories, but they cannot represent the semantics precisely or extract meaningful event-relevant content. To resolve these problems, we propose a near-duplicate detection approach for finding event-relevant content in Web documents. The efficiency of the approach and the proposed duplicate set generation algorithms make it suitable for identifying event-relevant content. The experiment results demonstrate the potential of the proposed approach for use in weblogs.

Published in:

Web Intelligence, IEEE/WIC/ACM International Conference on

Date of Conference:

2-5 Nov. 2007