Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Mining Fuzzy Domain Ontology from Textual Databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Ontology plays an essential role in the formalization of common information (e.g., products, services, relationships of businesses) for effective human-computer interactions. However, engineering of these ontologies turns out to be very labor intensive and time consuming. Although some text mining methods have been proposed for automatic or semi-automatic discovery of crisp ontologies, the robustness, accuracy, and computational efficiency of these methods need to be improved to support large scale ontology construction for real-world applications. This paper illustrates a novel fuzzy domain ontology mining algorithm for supporting real-world ontology engineering. In particular, contextual information of the knowledge sources is exploited for the extraction of high quality domain ontologies and the uncertainty embedded in the knowledge sources is modeled based on the notion of fuzzy sets. Empirical studies have confirmed that the proposed method can discover high quality fuzzy domain ontology which leads to significant improvement in information retrieval performance.

Published in:

Web Intelligence, IEEE/WIC/ACM International Conference on

Date of Conference:

2-5 Nov. 2007