By Topic

Classification of Texture Rotation-Invariant in Images Using Feature Distributions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)

A distribution-based classification approach and a set of developed texture measures are applied to rotation-invariant texture classification. The performance is compared to that obtained with the well-known circular-symmetric autoregressive random field (CSAR) model approach. A difficult classification problem of 15 different Brodatz textures and seven rotation angles is used in experiments. The results show much better performance for our approach than for the CSAR features. A detailed analysis of the confusion matrices and the rotation angles of misclassified samples produces several interesting observations about the classification problem and the features used in this study.

Published in:

Conference on Computational Intelligence and Multimedia Applications, 2007. International Conference on  (Volume:2 )

Date of Conference:

13-15 Dec. 2007