By Topic

An intelligent learning strategy for managing users' mobility in UMTS networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Singh, J.A.P. ; N.I. Coll. of Engg., TamilNadu ; Govindan, V.K. ; Sebastin, M.P.

Present generation mobile systems provide access to a wide range of services and enable mobile users to communicate regardless of their geographical location and their roaming characteristics. Due to the growing number of mobile users, global connectivity, and the small size of cells, one of the most critical issues regarding these networks is location management. In recent years, several strategies have been proposed to improve the performance of the location management procedure in UMTS networks. In this paper, we present a user pattern learning strategy (UPL) using scaled conjugate gradient (SCG) back propagation to reduce the location update signaling cost by increasing the intelligence of the location procedure in UMTS. This strategy associates to each user a list of cells where the user is likely to be with a given probability in each time interval. The implementation of this strategy has been subject to extensive tests. The results obtained confirm the efficiency of UPL in significantly reducing the costs of both location updates and call delivery procedures when compared to the UMTS standard and with other strategies well-known in the literature.

Published in:

Conference on Computational Intelligence and Multimedia Applications, 2007. International Conference on  (Volume:1 )

Date of Conference:

13-15 Dec. 2007