By Topic

Face Recognition Using State Space Parameters and Artificial Neural Network Classifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kabeer, V. ; Kannur Univ., Kannur ; Narayanan, N.K.

This paper presents a new approach to model face images using the state space feature parameters. We present a novel feature extraction method for the recognition of face images based on their grayscale images eliminating any step of pre-processing. Experiments are performed using the standard AT & T (formerly, ORL face database) face database containing 400 face images of 40 different individuals. The sate space map and state space point distribution graph drawn for 400 individuals' face image shows the credibility of the method. To show the nonlinear nature of the face images the fractal dimension is also computed from the sate space map of the each face image using the box count method. In the recognition stage we used artificial neural network classifier, and the proposed SSPD feature is found to be promising, and this is the first attempt of this kind in the field of face recognition.

Published in:

Conference on Computational Intelligence and Multimedia Applications, 2007. International Conference on  (Volume:3 )

Date of Conference:

13-15 Dec. 2007