By Topic

Implementation of FC-1 and FC-2 Layer for Multi-Gigabit Fibre Channel Transport

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yu Zhang ; China Huazhong Univ., Wuhan ; Dan Feng ; Wei Tong ; Jingning Liu

Fibre Channel (FC) is a high performance, low-latency data transfer technology that dominates today's high-end Storage Area Networks (SAN) market. This paper presents the design and implementation of Fibre Channel FC-1 and part of FC-2 layer for multi- gigabit Fibre Channel applications such as point-to-point and fabric interconnect. For efficient implementation, we have used the protocol-optimized hardware modules, such as on-the-fly CRC checking, frame length verification modules for frame receiving, CRC calculation and EOF generation modules for frame transmitting, to reduce the network latency. We also present an efficient method for buffer-to-buffer credit recovery, the basic idea of our method is to recover lost credits within the local as well as the remote port and avoid blocking of transmitters in long term. In the experiment, we build a 2G FC SCSI initiator using this logic core. The experimental results show that the initiator can reach a maximum throughput of 189.52MB/s for reading a RAMDisk target on the remote computer equipped with a QLA2310FCHBA.

Published in:

Future Generation Communication and Networking (FGCN 2007)  (Volume:1 )

Date of Conference:

6-8 Dec. 2007