By Topic

Enhancing the ESIM (Embedded Systems Improving Method) by Combining Information Flow Diagram with Analysis Matrix for Efficient Analysis of Unexpected Obstacles in Embedded Software

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shinyashiki, Y. ; Matsushita Electr. Works, Ltd., Kadoma ; Mise, T. ; Hashimoto, M. ; Katamine, K.
more authors

In order to improve the quality of embedded software, this paper proposes an enhancement to the ESIM (embedded systems improving method) by combining an IFD (information flow diagram) with an Analysis Matrix to analyze unexpected obstacles in the software. These obstacles are difficult to predict in the software specification. Recently, embedded systems have become larger and more complicated. Theoretically therefore, the development cycle of these systems should be longer. On the contrary, in practice the cycle has been shortened. This trend in industry has resulted in the oversight of unexpected obstacles, and consequently affected the quality of embedded software. In order to prevent the oversight of unexpected obstacles, we have already proposed two methods for requirements analysis: the ESIM using an Analysis Matrix and a method that uses an IFD. In order to improve the efficiency of unexpected obstacle analysis at reasonable cost, we now enhance the ESIM by combining an IFD with an Analysis Matrix. The enhancement is studied from the following three viewpoints. First, a conceptual model comprising both the Analysis Matrix and IFD is defined. Then, a requirements analysis procedure is proposed, that uses both the Analysis Matrix and IFD, and assigns each specific role to either an expert or non-expert engineer. Finally, to confirm the effectiveness of this enhancement, we carry out a description experiment using an IFD.

Published in:

Software Engineering Conference, 2007. APSEC 2007. 14th Asia-Pacific

Date of Conference:

4-7 Dec. 2007