By Topic

Active Vibration Isolation Using an Electrical Damper or an Electrical Dynamic Absorber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sang-Myeong Kim ; EMPA - Mater. Sci. & Technol., Duebendorf ; Pietrzko, S. ; Brennan, M.J.

This paper describes a theoretical and experimental study to show how an electrical damper or an electrical dynamic absorber, implemented using an electromagnetic actuator and an accelerometer, can control vibration transmission through a vibration isolator. The electrical damper is realized by feeding back the equipment velocity to the actuator with constant gain. The electrical dynamic absorber is realized by feeding back the equipment acceleration through a second-order low-pass filter. Because it is found that the plant on a flexible base is asymptotically similar to that on a rigid base, the optimal parameters of the control filter are determined analytically, independent of the base dynamics. Experimental results show that the electrical dynamic absorber has a similar performance to the electrical damper. The maximum reduction in transmitted vibration achieved was about 38 dB for both methods. It is also shown that the electrical dynamic absorber is more robust to undesirable dynamics outside the control bandwidth. Another advantage of the electrical dynamic absorber is that it does not require an integrator to transform acceleration into velocity.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:16 ,  Issue: 2 )