Cart (Loading....) | Create Account
Close category search window
 

Multiple appearance models for face tracking in surveillance videos

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Swaminathan, G. ; Honeywell Technol. Solutions, Bangalore ; Venkoparao, V. ; Bedros, S.

Face tracking is a key component for automated video surveillance systems. It supports and enhances tasks such as face recognition and video indexing. Face tracking in surveillance scenarios is a challenging problem due to ambient illumination variations, face pose changes, occlusions, and background clutter. We present an algorithm for tracking faces in surveillance video based on a particle filter mechanism using multiple appearance models for robust representation of the face. We propose color based appearance model complemented by an edge based appearance model using the Difference of Gaussian (DOG) filters. We demonstrate that combined appearance models are more robust in handling the face and scene variations than a single appearance model. For example, color template appearance model is better in handling pose variations but they deteriorate against illumination variations. Similarly, an edge based model is robust in handling illumination variations but they fail in handling substantial pose changes. Hence, a combined model is more robust in handling pose and illumination changes than either one of them by itself. We show how the algorithm performs on a real surveillance scenario where the face undergoes various pose and illumination changes. The algorithm runs in real-time at 20 fps on a standard 3.0 GHz desktop PC.

Published in:

Advanced Video and Signal Based Surveillance, 2007. AVSS 2007. IEEE Conference on

Date of Conference:

5-7 Sept. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.