By Topic

2D face pose normalisation using a 3D morphable model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

The ever growing need for improved security, surveillance and identity protection, calls for the creation of evermore reliable and robust face recognition technology that is scalable and can be deployed in all kinds of environments without compromising its effectiveness. In this paper we study the impact that pose correction has on the performance of 2D face recognition. To measure the effect, we use a state of the art 2D recognition algorithm. The pose correction is performed by means of 3D morphable model. Our results on the non frontal XM2VTS database showed that pose correction can improve recognition rates up to 30%.

Published in:

Advanced Video and Signal Based Surveillance, 2007. AVSS 2007. IEEE Conference on

Date of Conference:

5-7 Sept. 2007