By Topic

Protein folding prediction in 3D FCC HP lattice model using genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hoque, M.T. ; Monash Univ., Clayton ; Chetty, M. ; Sattar, A.

In most of the successful real protein structure prediction (PSP) problem, lattice models have been essentially utilized to have the folding backbone sampling at the top of the hierarchical approach. A three dimensional face-centred-cube (FCC), with the provision for providing the most compact core, can map closest to the folded protein in reality. Hence, our successful hybrid genetic algorithms (HGA) proposed earlier for a square and cube lattice model is being extended in this paper for a 3D FCC model. Furthermore, twins (conformations having similarity with each other), in GA population have also been considered for removal from the search space for improving the effectiveness of GA The HGA combined with the twin removal (TR) strategy showed best performance when compared with the simple GA (SGA), SGA with TR, and HGA only versions. Experiments were carried out on the publicly available benchmark HP sequences and results are expressed based on the fitness of the corresponding applied lattice model, which will help any future novel approach to be compared.

Published in:

Evolutionary Computation, 2007. CEC 2007. IEEE Congress on

Date of Conference:

25-28 Sept. 2007