By Topic

Efficient particle swarm optimization: a termination condition based on the decision-making approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kwok, N.M. ; Univ. of Technol., Sydney ; Ha, Q.P. ; Liu, D.K. ; Fang, G.
more authors

Evolutionary computation algorithms, such as the particle swarm optimization (PSO), have been widely applied in numerical optimizations and real-world product design, not only for their satisfactory performances but also in their relaxing the need for detailed mathematical modelling of complex systems. However, as iterative heuristic searching methods, they often suffer from difficulties in obtaining high quality solutions in an efficient manner. Since unnecessary resources used in computation iterations should be avoided, the determination of a proper termination condition for the algorithms is desirable. In this work, termination is cast as a decision-making process to end the algorithm. Specifically, the non-parametric sign- test is incorporated as a hypothetical test method such that a quantifiable termination in regard to specifiable decision-errors can be assured. Benchmark optimization problems are tackled using the PSO as an illustrative optimizer to demonstrate the effectiveness of the proposed termination condition.

Published in:

Evolutionary Computation, 2007. CEC 2007. IEEE Congress on

Date of Conference:

25-28 Sept. 2007