Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Cross-searching strategy for multi-objective particle swarm optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The main difference between an original PSO (single-objective) with a multi-objective PSO (MOPSO) is the local guide (global best solution) distribution must be redefined in order to obtain a set of non-dominated solutions (Pareto front). In MOPSO, the selection of local guide for particles will direct affect the performance of finding Pareto optimum. This paper presents a local guide assignment strategy for MOPSO called cross-searching strategy (CSS) which will distribute suitable local guides for particles to lead them toward to Pareto front and also keeping diversity of solutions. Experiments were conducted on several test functions and metrics from the standard literature on evolutionary multi-objective optimization. The results demonstrate good performance of the CSS for MOPSO in solving multi-objective problems when compare with recent approaches of multi-objective optimizer.

Published in:

Evolutionary Computation, 2007. CEC 2007. IEEE Congress on

Date of Conference:

25-28 Sept. 2007