Cart (Loading....) | Create Account
Close category search window
 

Development and validation of different hybridization strategies between GA and PSO

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

In this paper a new class of hybridization strategies between GA and PSO is presented and validated. The Genetical Swarm Optimization (GSO) approach is presented here with respect with different test cases to prove its effectiveness. GSO is a hybrid evolutionary technique developed in order to exploit in the most effective way the uniqueness and peculiarities of two classical optimization approaches, the Particle Swarm Optimization (PSO) and Genetic Algorithms (GA). This algorithm is essentially, as PSO and GA, a population-based heuristic search technique, which can be used to solve combinatorial optimization problems, modeled on the concepts of natural selection and evolution (GA), but also based on cultural and social rules derived from the analysis of the swarm intelligence and from the interaction among particles (PSO). The here proposed class of hybrid algorithms is tested for various benchmark problems, analyzing different computational costs, and finally reporting some numerical results.

Published in:

Evolutionary Computation, 2007. CEC 2007. IEEE Congress on

Date of Conference:

25-28 Sept. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.