By Topic

A new hybrid Particle Swarm Optimization with wavelet theory based mutation operation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
S. H. Ling ; School of Electrical, Electronic and Computer Engg,University of Western Australia, WA6009, Australia ; C. W. Yeung ; K. Y. Chan ; H. H. C. Iu
more authors

An improved hybrid particle swarm optimization (PSO) that incorporates a wavelet-based mutation operation is proposed. It applies wavelet theory to enhance PSO in exploring solution spaces more effectively for better solutions. A suite of benchmark test functions and an application example on tuning an associative-memory neural network are employed to evaluate the performance of the proposed method. It is shown empirically that the proposed method outperforms significantly the existing methods in terms of convergence speed, solution quality and solution stability.

Published in:

2007 IEEE Congress on Evolutionary Computation

Date of Conference:

25-28 Sept. 2007