By Topic

A boundary search based ACO algorithm coupled with stochastic ranking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Leguizamon, G. ; Univ. Nacional de San Luis, San Luis ; Coello Coello, Carlos A.

In this paper we present a boundary search based ACO algorithm for solving nonlinear constrained optimization problems. The aim of this work is twofold. Firstly, we present a modified search engine which implements a boundary search approach based on a recently proposed ACO metaheuristic for continues problems. Secondly, we propose the incorporation of the stochastic ranking technique to deal with feasible and infeasible solutions during the search which focuses on the boundary region. In our experimental study we compare the overall performance of the proposed ACO algorithm by including two different complementary constraint-handling techniques: a penalty function and stochastic ranking. In addition, we include in our comparison of results the stochastic ranking algorithm, which was originally implemented using an evolution strategy as its search engine.

Published in:

Evolutionary Computation, 2007. CEC 2007. IEEE Congress on

Date of Conference:

25-28 Sept. 2007