Cart (Loading....) | Create Account
Close category search window

Hierarchical importance sampling instead of annealing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Higo, T. ; Tokyo Inst. of Technol., Tokyo ; Takadama, K.

This paper proposes a novel method, hierarchical importance sampling (HIS), which can be used instead of converging the population for evolutionary algorithms based on probabilistic models (EAPM). In HIS, multiple populations are simulated simultaneously so that they have different diversities. This mechanism allows HIS to obtain promising solutions with various diversities. Experimental comparisons between HIS and the annealing (i.e., general EAPM) have revealed that HIS outperforms the annealing when applying to a problem of a 2D Ising model, which have many local optima. Advantages of HIS can be summarized as follows: (1) Since populations do not need to converge and do not change rapidly, HIS can build probability models with stability; (2) Since samples with better cost function values can be used for building probability models in HIS, HIS can obtain better probability models; (3)HIS can reuse historical results, which are normally discarded in the annealing.

Published in:

Evolutionary Computation, 2007. CEC 2007. IEEE Congress on

Date of Conference:

25-28 Sept. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.