Cart (Loading....) | Create Account
Close category search window

On the diversity of diversity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wallin, D. ; Univ. of Limerick, Limerick ; Ryan, C.

Estimation of distribution algorithms (EDA) is an active area of research within the field of evolutionary algorithms. While EDAs have shown great promise on difficult problems with strong epistasis between genes, such as hierarchical and deceptive problems, they have not been a choice for non-stationary problems where the target solution changes over time. This work aims to explore the diversity within the population of an EDA using a supervised classifier. We introduce a technique, sampling-mutation, that can help increase the useful diversity within the population. We show that sampling-mutation increases the performance of an EDA on a non-stationary problem and a hierarchical problem.

Published in:

Evolutionary Computation, 2007. CEC 2007. IEEE Congress on

Date of Conference:

25-28 Sept. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.