By Topic

Automated detection of objects using multiple hierarchical segmentations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Akcay, H.G. ; Bilkent Univ., Ankara ; Aksoy, S.

We introduce an unsupervised method that combines both spectral and structural information for automatic object detection. First, a segmentation hierarchy is constructed by combining structural information extracted by morphological processing with spectral information summarized using principal components analysis. Then, segments that maximize a measure consisting of spectral homogeneity and neighborhood connectivity are selected as candidate structures for object detection. Given the observation that different structures appear more clearly in different principal components, we present an algorithm that is based on probabilistic Latent Semantic Analysis (PLSA) for grouping the candidate segments belonging to multiple segmentations and multiple principal components. The segments are modeled using their spectral content and the PLSA algorithm builds object models by learning the object-conditional probability distributions. Labeling of a segment is done by computing the similarity of its spectral distribution to the distribution of object models using Kullback-Leibler divergence. Experiments on two data sets show that our method is able to automatically detect, group, and label segments belonging to the same object classes.

Published in:

Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International

Date of Conference:

23-28 July 2007