By Topic

Simple adaptive control for SISO nonlinear systems using multiple neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

This paper presents a method of continuous-time simple adaptive control (SAC) using multiple neural networks for a single-input single-output (SISO) nonlinear systems with unknown parameters and dynamics, bounded-input bounded- output, and bounded nonlinearities. The control input is given by the sum of the output of the simple adaptive controller and the sum of the outputs of the parallel small-scale neural networks. The parallel small-scale neural networks are used to compensate the nonlinearity of plant dynamics that is not taken into consideration in the usual SAC. The role of the parallel small- scale neural networks is to construct a linearized model by minimizing the output error caused by nonlinearities in the control systems. Finally, the stability analysis of the proposed method is carried out, and the effectiveness of this method is confirmed through computer simulations.

Published in:

SICE, 2007 Annual Conference

Date of Conference:

17-20 Sept. 2007