Cart (Loading....) | Create Account
Close category search window
 

Bio-Inspired MEMS Devices for Electrical Cell Separation and Mechanical Cell Characterization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Young-Ho Cho ; Korea Adv. Inst. of Sci. & Technol. (KAIST), Daejeon

We present a couple of bio-inspired microdevices for electrical cell separation and mechanical cell characterization, respectively. The electrical cell separator, inspired from ion-selective permeation mechanism in bio-membrane, performs size-dependent cell sorting functions using electrical pillar array. The mechanical cell characterization device, inspired from deformability-selective erythrocyte destruction mechanism in spleen, performs size-independent cell deformability monitoring functions using mechanical filter array. The structures and principles of the bio-inspired microdevices are presented and compared with those of the biological counter parts. The unique features and performance characteristics of the bio-inspired microdevices are analyzed and verified by experimental study. The cell separator illustrates an electrical method for size-dependent cell sorting insensitive to cell property, while the cell deformability sensor demonstrates a mechanical method for cell deformability monitoring insensitive to cell size. Additional advantages of the bio-inspired microdevices include simple structures and stable performance for applications to integrated biomedical systems.

Published in:

Micro-NanoMechatronics and Human Science, 2007. MHS '07. International Symposium on

Date of Conference:

11-14 Nov. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.