By Topic

Two-Stage Vector Quantization Based Multi-band Models for Speaker Identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wan-Chen Chen ; St. John's Univ., Taipei ; Ching-Tang Hsieh ; Chih-Hsu Hsu

This paper presents an effective method for speaker identification. Based on the wavelet transform, the input speech signal is decomposed into several frequency bands, and then the linear predictive cepstral coefficients (LPCC) of each band are calculated. Furthermore, the cepstral mean normalization technique is applied to all computed features in order to provide similar parameter statistics in all acoustic environments. We propose a multi-band 2-stage vector quantization (VQ) as the recognition model in which different 2-stage VQ classifiers are applied independently to each band and the errors of all 2-stage VQ classifiers are combined to yield total error and a global recognition decision. The experimental results show that the proposed method gives better performance than other recognition models proposed previously in both clean and noisy environments.

Published in:

Convergence Information Technology, 2007. International Conference on

Date of Conference:

21-23 Nov. 2007