By Topic

Korean Part-of-Speech Tagging Using Disambiguation Rules for Ambiguous Word and Statistical information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Young-Min Ahn ; Chungbuk Nat. Univ., Cheongju ; Young-Hoon Seo

In this paper we describe a Korean part-of-speech tagging approach using disambiguation rules for ambiguous word and statistical information. Our tagging approach resolves lexical ambiguities by common rules, rules for individual ambiguous word, and statistical approach. Common rules are ones for idioms and phrases of common use including phrases composed of main and auxiliary verbs. We built disambiguation rules for each word which has several distinct morphological analysis results to enhance tagging accuracy. Each rule may have morphemes, morphological tags, and/or word senses of not only an ambiguous word itself but also words around it. Statistical approach based on HMM is then applied for ambiguous words which are not resolved by rules. Experiment shows that the part-of-speech tagging approach has high accuracy and broad coverage.

Published in:

Convergence Information Technology, 2007. International Conference on

Date of Conference:

21-23 Nov. 2007