By Topic

Task Allocation in Distributed Embedded Systems by Genetic Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tengg, A. ; Graz Univ. of Technol., Graz ; Klausner, A. ; Rinner, B.

In this paper we describe a task allocation method, that utilizes genetic programming to find a suitable solution in an adequate time for this NP-complete combinatorial optimization problem. The underlying distributed embedded system is heterogenous, consisting of different processors with different properties such as core type, clock frequency, available memory, and I/O interfaces, interconnected with different communication media. In our applications, which are described as dataflow graphs, the number of tasks to be placed is much larger than the number of processors available. We highlight the difficulties when applying genetic programming to this problem and present our solutions and enhancements, accompanied with some simulation results.

Published in:

Parallel and Distributed Computing, Applications and Technologies, 2007. PDCAT '07. Eighth International Conference on

Date of Conference:

3-6 Dec. 2007