Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Effect of Polyaniline Functionalized Carbon Nanotubes Addition on the Positive Temperature Coefficient Behavior of Carbon Black/High-Density Polyethylene Nanocomposites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

The influence of addition of polyaniline functionalized multiwalled carbon nanotubes (PANI-MWNTs) on the positive temperature coefficient (PTC) characteristics of carbon black (CB) filled high-density polyethylene (HDPE) nanocomposite materials have been studied. Polymer nanocomposites were prepared by the combined solution and melt-mixing process. The experimental results showed that the PTC intensity and maximum resistivity of the hybrid nanocomposites were obviously influenced by the polyaniline functionalization of multiwalled carbon nanotubes (MWNTs). A noticeable PTC of resistivity was observed for PANI-MWNTs/CB/HDPE hybrid nanocomposites near the melting point of HDPE. This is due to the significant volume expansion near the melting point of the HDPE in presence of hybrid fillers and a sudden increase of the resistivity due to the disconnection of the conductive paths. The PTC effect of CB/HDPE composites can be effectively modified by the addition of PANI-MWNTs.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:7 ,  Issue: 2 )