By Topic

Real-time prediction in a stochastic domain via similarity-based data-mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Steffens, T. ; Fraunhofer Inst. for Intelligent Anal. & Inf.-Systs., Sankt Augustin ; Hugelmeyer, P.

This paper introduces an application and a methodology to predict future states of a process under real-time requirements. The real-time functionality is achieved by creating a Bayesian tree via data-mining on agent-based simulations. The computationally expensive parts are handled in an offline phase, while the online phase is computationally cheap. In the offline phase the simulations are run and meaningful clusters of states are identified by use of virtual attributes. Then the transition probabilities between states of different clusters are organized in a Bayesian tree. Finally, in the online phase similarity measures are used again in order to classify query states into the clusters and to infer the probability of future states. The application domain is the support of military units during missions and maneuvers.

Published in:

Simulation Conference, 2007 Winter

Date of Conference:

9-12 Dec. 2007