Cart (Loading....) | Create Account
Close category search window
 

A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

54 Author(s)

A 45 nm logic technology is described that for the first time incorporates high-k + metal gate transistors in a high volume manufacturing process. The transistors feature 1.0 nm EOT high-k gate dielectric, dual band edge workfunction metal gates and third generation strained silicon, resulting in the highest drive currents yet reported for NMOS and PMOS. The technology also features trench contact based local routing, 9 layers of copper interconnect with low-k ILD, low cost 193 nm dry patterning, and 100% Pb-free packaging. Process yield, performance and reliability are demonstrated on 153 Mb SRAM arrays with SRAM cell size of 0.346 mum2, and on multiple microprocessors.

Published in:

Electron Devices Meeting, 2007. IEDM 2007. IEEE International

Date of Conference:

10-12 Dec. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.