By Topic

Contourlet-based despeckling for SAR image using hidden Markov tree and Gaussian Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guozhong Chen ; EE Department, Shanghai Jiao Tong University, China ; Xingzhao Liu

The granular appearance of speckle noise in synthetic aperture radar (SAR) imagery makes it very difficult to visually and automatically interpret SAR data. Therefore, speckle reduction is a prerequisite for many SAR image processing tasks. In this paper, we propose a contourlet-based despeckling method for the SAR image using the hidden Markov tree (HMT) and Gaussian Markov models. The contourlet transform is a recently developed two-dimensional transform technique. It is reported to be more effective than wavelets in representing smooth curvature details typical of natural images. The HMT and Gaussian Markov models will reflect the correlations of the contourlet coefficients not only across scales and directions but also between neighbors. The experimental results show that the proposed method in contrary to other methods can obtain a better trade-off between smoothing the homogeneous areas and keeping the edges and can get better visual effect.

Published in:

Synthetic Aperture Radar, 2007. APSAR 2007. 1st Asian and Pacific Conference on

Date of Conference:

5-9 Nov. 2007