Cart (Loading....) | Create Account
Close category search window
 

Computer-Vision-Based Fabric Defect Detection: A Survey

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kumar, A. ; Indian Inst. of Technol., New Delhi

The investment in an automated fabric defect detection system is more than economical when reduction in labor cost and associated benefits are considered. The development of a fully automated web inspection system requires robust and efficient fabric defect detection algorithms. The inspection of real fabric defects is particularly challenging due to the large number of fabric defect classes, which are characterized by their vagueness and ambiguity. Numerous techniques have been developed to detect fabric defects and the purpose of this paper is to categorize and/or describe these algorithms. This paper attempts to present the first survey on fabric defect detection techniques presented in about 160 references. Categorization of fabric defect detection techniques is useful in evaluating the qualities of identified features. The characterization of real fabric surfaces using their structure and primitive set has not yet been successful. Therefore, on the basis of the nature of features from the fabric surfaces, the proposed approaches have been characterized into three categories; statistical, spectral and model-based. In order to evaluate the state-of-the-art, the limitations of several promising techniques are identified and performances are analyzed in the context of their demonstrated results and intended application. The conclusions from this paper also suggest that the combination of statistical, spectral and model-based approaches can give better results than any single approach, and is suggested for further research.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:55 ,  Issue: 1 )

Date of Publication:

Jan. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.