Cart (Loading....) | Create Account
Close category search window
 

Achievable Rates for Pattern Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Westover, M.B. ; Massachusetts Gen. Hosp., Boston ; O'Sullivan, J.A.

Biological and machine pattern recognition systems face a common challenge: Given sensory data about an unknown pattern, classify the pattern by searching for the best match within a library of representations stored in memory. In many cases, the number of patterns to be discriminated and the richness of the raw data force recognition systems to internally represent memory and sensory information in a compressed format. However, these representations must preserve enough information to accommodate the variability and complexity of the environment, otherwise recognition will be unreliable. Thus, there is an intrinsic tradeoff between the amount of resources devoted to data representation and the complexity of the environment in which a recognition system may reliably operate. In this paper, we describe a mathematical model for pattern recognition systems subject to resource constraints, and show how the aforementioned resource-complexity tradeoff can be characterized in terms of three rates related to the number of bits available for representing memory and sensory data, and the number of patterns populating a given statistical environment. We prove single-letter information-theoretic bounds governing the achievable rates, and investigate in detail two illustrative cases where the pattern data is either binary or Gaussian.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 1 )

Date of Publication:

Jan. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.