By Topic

On Secret Reconstruction in Secret Sharing Schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huaxiong Wang ; Nanyang Technol. Univ., Singapore ; Wong, Duncan S.

A secret sharing scheme typically requires secure communications in each of two distribution phases: (1) a dealer distributes shares to participants (share distribution phase); and later (2) the participants in some authorised subset send their share information to a combiner (secret reconstruction phase). While problems on storage required for participants, for example, the size of shares, have been well studied, problems regarding the communication complexity of the two distribution phases seem to have been mostly neglected in the literature so far. In this correspondence, we deal with several communication related problems in the secret reconstruction phase. Firstly, we show that there is a tradeoff between the communication costs and the number of participants involved in the secret reconstruction. We introduce the communication rate as the ratio of the secret size and the total number of communication bits transmitted from the participants to the combiner in the secret reconstruction phase. We derive a lower bound on the communication rate and give constructions that meet the bound. Secondly, we show that the point-to-point secure communication channels for participants to send share information to the combiner can be replaced with partial broadcast channels. We formulate partial broadcast channels as set systems and show that they are equivalent to the well-known combinatorial objects of cover-free family. Surprisingly, we find that the number of partial broadcast channels can be significantly reduced from the number of point-to-point secure channels. Precisely, in its optimal form, the number of channels can be reduced from n to O(log n), where is the number of participants in a secret sharing scheme. We also study the communication rates of partial broadcast channels for the secret reconstruction.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 1 )