By Topic

State Estimation With Initial State Uncertainty

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Levinbook, Y. ; NextWave Wireless, San Diego ; Wong, T.F.

The problem of state estimation with initial state uncertainty is approached from a statistical decision theory point of view. The initial state is regarded as deterministic and unknown. It is only known that the initial state vector belongs to a specified parameter set. The (frequentist) risk is considered as the performance measure and the minimax approach is adopted. Minimax estimators are derived for some important cases of unbounded parameter sets. If the parameter set is bounded, a method of finding estimators whose maximum risk is arbitrarily close to that of a minimax estimator is provided. This method is illustrated with an example in which an estimator whose maximum risk is at most 3% larger than that of a minimax estimator is derived.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 1 )