By Topic

Asymptotic Minimax Bounds for Stochastic Deconvolution Over Groups

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ja-Yong Koo ; Korea Univ., Seoul ; Peter T. Kim

This paper examines stochastic deconvolution over noncommutative compact Lie groups. This involves Fourier analysis on compact Lie groups as well as convolution products over such groups. An observation process consisting of a known impulse response function convolved with an unknown signal with additive white noise is assumed. Data collected through the observation process then allow us to construct an estimator of the signal. Signal recovery is then assessed through integrated mean squared error for which the main results show that asymptotic minimaxity depends on smoothness properties of the impulse response function. Thus, if the Fourier transform of the impulse response function is bounded polynomially, then the asymptotic minimax signal recovery is polynomial, while if the Fourier transform of the impulse response function is exponentially bounded, then the asymptotic minimax signal recovery is logarithmic. Such investigations have been previously considered in both the engineering and statistics literature with applications in among others, medical imaging, robotics, and polymer science.

Published in:

IEEE Transactions on Information Theory  (Volume:54 ,  Issue: 1 )