Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Interference Channels With Common Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jinhua Jiang ; Nat. Univ. of Singapore, Singapore ; Yan Xin ; Garg, H.K.

In this paper, the interference channel with common information (ICC), in which two senders need deliver not only private messages but also certain common messages to their corresponding receivers, is investigated. An achievable rate region for such a channel is obtained by applying a superposition coding scheme that consists of successive encoding and simultaneous decoding. It is shown that the derived achievable rate region includes or extends several existing results for the interference channels with or without common information. The rate region is then specialized to a class of ICCs in which one sender has no private information to transmit, and a class of deterministic interference channels with common information (DICCs). In particular, the derived rate region is found to be the capacity region for this class of DICCs. Last, the achievable rate region derived for the discrete memoryless ICC is extended to the Gaussian case, in which a numerical example is provided to illustrate the improvement of our rate region over an existing result.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 1 )