By Topic

Feedback Phase in Optically Generated Chaos: A Secret Key for Cryptographic Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

The feedback phase in a chaotic system consisting of a semiconductor laser subject to delayed optical feedback is considered for the first time as a secret key for secure chaotic communications not exclusively based on hardware uniqueness. Extensive numerical simulations illustrate that the feedback phase is of extreme importance as far as synchronization is concerned. The ability of an eavesdropper to attack the intensity-modulated message when a pseudorandom variation of the feedback phase is imposed at the transmitter's side is numerically quantified by bit-error-rate calculations. The analysis demonstrates that the eavesdropper is not able to synchronize and hence to extract the message when he is not aware of the phase variations even if he is equipped with an identical chaotic device.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:44 ,  Issue: 2 )