By Topic

Digitally controlled point of load converter with very fast transient response

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jakobsen, L.T. ; Tech. Univ. of Denmark, Lyngby ; Andersen, M.A.E.

This paper presents a new digital self-oscillating modulator (DiSOM) that allows the duty cycle to be changed instantly. The DiSOM modulator is shown to have variable switching that is a function of the duty cycle. Compared to a more traditional digital PWM modulator based on a counter and comparator the DiSOM modulator allows the sampling frequency of the output voltage control loop to be higher than the switching frequency of the power converter, typically a DC/DC converter. The features of the DiSOM modulator makes it possible to design a digitally controlled DC/DC converter with linear voltage mode control and very fast transient response. The DiSOM modulator is combined with a digital PID compensator algorithm is implemented in a hybrid CPLD/FPGA and is used to control a synchronous Buck converter, which is used in typical Point of Load applications. The computational time is only three clock cycles from the time the A/D converter result is read by the control algorithm to the time the duty cycle command is updated. A typical POL converter has been built and the experimental results show that the transient response of the converter is very fast. The output voltage overshoot is only 2.5% of the nominal output voltage when a load step of 50% - 100% of nominal output current is applied to the converter. The settling time is approximately 8 PWM cycles.

Published in:

Power Electronics and Applications, 2007 European Conference on

Date of Conference:

2-5 Sept. 2007