By Topic

A constraint logic programming framework for the synthesis of fault-tolerant schedules for distributed embedded systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Poulsen, K.H. ; Tech. Univ. of Denmark, Lyngby ; Pop, P. ; Izosimov, V.

We present a constraint logic programming (CLP) approach for synthesis of fault-tolerant hard real-time applications on distributed heterogeneous architectures. We address time-triggered systems, where processes and messages are statically scheduled based on schedule tables. We use process re-execution for recovering from multiple transient faults. We propose three scheduling approaches, which each present a trade-off between schedule simplicity and performance, (i) full transparency, (ii) slack sharing and (iii) conditional, and provide various degrees of transparency. We have developed a CLP framework that produces the fault-tolerant schedules, guaranteeing schedulability in the presence of transient faults. We show how the framework can be used to tackle design optimization problems.The proposed approach has been evaluated using extensive experiments.

Published in:

Emerging Technologies and Factory Automation, 2007. ETFA. IEEE Conference on

Date of Conference:

25-28 Sept. 2007