By Topic

Robust Foreground Detection In Video Using Pixel Layers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kedar Patwardhan ; Visualization & Comput. Vision Lab., Niskayuna ; Guillermo Sapiro ; Vassilios Morellas

A framework for robust foreground detection that works under difficult conditions such as dynamic background and moderately moving camera is presented in this paper. The proposed method includes two main components: coarse scene representation as the union of pixel layers, and foreground detection in video by propagating these layers using a maximum-likelihood assignment. We first cluster into "layers" those pixels that share similar statistics. The entire scene is then modeled as the union of such nonparametric layer-models. An incoming pixel is detected as foreground if it does not adhere to these adaptive models of the background. A principled way of computing thresholds is used to achieve robust detection performance with a prespecified number of false alarms. Correlation between pixels in the spatial vicinity is exploited to deal with camera motion without precise registration or optical flow. The proposed technique adapts to changes in the scene, and allows to automatically convert persistent foreground objects to background and reconvert them to foreground when they become interesting. This simple framework addresses the important problem of robust foreground and unusual region detection, at about 10 frames per second on a standard laptop computer. The presentation of the proposed approach is complemented by results on challenging real data and comparisons with other standard techniques.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:30 ,  Issue: 4 )