By Topic

Automatic music genre classification using ensemble of classifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Carlos N. Silla Jr. ; Pontifical Catholic University of Paraná (PUCPR), R. Imaculada Conceic, õo, 1155, Curitiba, PR, 80215-901, Brazil ; Celso A. A. Kaestner ; Alessandro L. Koerich

This paper presents a novel approach to the task of automatic music genre classification which is based on multiple feature vectors and ensemble of classifiers. Multiple feature vectors are extracted from a single music piece. First, three 30-second music segments, one from the beginning, one from the middle and one from end part of a music piece are selected and feature vectors are extracted from each segment. Individual classifiers are trained to account for each feature vector extracted from each music segment. At the classification, the outputs provided by each individual classifier are combined through simple combination rules such as majority vote, max, sum and product rules, with the aim of improving music genre classification accuracy. Experiments carried out on a large dataset containing more than 3,000 music samples from ten different Latin music genres have shown that for the task of automatic music genre classification, the features extracted from the middle part of the music provide better results than using the segments from the beginning or end part of the music. Furthermore, the proposed ensemble approach, which combines the multiple feature vectors, provides better accuracy than using single classifiers and any individual music segment.

Published in:

2007 IEEE International Conference on Systems, Man and Cybernetics

Date of Conference:

7-10 Oct. 2007