By Topic

Toward Realistic and Artifact-Free Insider-Threat Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Killourhy, K.S. ; Carnegie Mellon Univ., Pittsburgh ; Maxion, R.A.

Progress in insider-threat detection is currently limited by a lack of realistic, publicly available, real-world data. For reasons of privacy and confidentiality, no one wants to expose their sensitive data to the research community. Data can be sanitized to mitigate privacy and confidentiality concerns, but the mere act of sanitizing the data may introduce artifacts that compromise its utility for research purposes. If sanitization artifacts change the results of insider-threat experiments, then those results could lead to conclusions which are not true in the real world. The goal of this work is to investigate the consequences of sanitization artifacts on insider-threat detection experiments. We assemble a suite of tools and present a methodology for collecting and sanitizing data. We use these tools and methods in an experimental evaluation of an insider-threat detection system. We compare the results of the evaluation using raw data to the results using each of three types of sanitized data, and we measure the effect of each sanitization strategy. We establish that two of the three sanitization strategies actually alter the results of the experiment. Since these two sanitization strategies are commonly used in practice, we must be concerned about the consequences of sanitization artifacts on insider-threat research. On the other hand, we demonstrate that the third sanitization strategy addresses these concerns, indicating that realistic, artifact-free data sets can be created with appropriate tools and methods.

Published in:

Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual

Date of Conference:

10-14 Dec. 2007