Cart (Loading....) | Create Account
Close category search window

Mobile robot self-localization in complex indoor environments using monocular vision and 3D model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kitanov, A. ; Zagreb Univ., Zagreb ; Bisevac, S. ; Petrovic, I.

In this paper, we consider the problem of mobile robot pose estimation using only visual information from a single camera and odometry readings. A focus is on building complex environmental models, fast online rendering and real-time complex and noisy image segmentation. The 3D model of the robot's environment is built using a professional freeware computer graphics tool named Blender and pre-stored in the memory of the robot's on-board computer. Estimation of the mobile robot pose as a stochastic variable is done by correspondences of image lines, extracted using Random Window Randomized Hough Transform line detection algorithm, and model lines, predicted using odometry readings and 3D environment model. The camera model and ray tracing algorithm are also described. Developed algorithms are experimentally tested using a Pioneer 2DX mobile robot.

Published in:

Advanced intelligent mechatronics, 2007 IEEE/ASME international conference on

Date of Conference:

4-7 Sept. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.