By Topic

Optimal Distributed Routing and Power Control Decomposition for Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dekorsy, A. ; Alcatel-Lucent, Nuremberg ; Fliege, J. ; Sollner, M.

Efficiently transmitting data in wireless networks requires an integrated routing, scheduling, and power control strategy. As opposed to the universal dual decomposition we present a method that solve this optimization problem by fully exploiting its combinatorial structure. The method still maintains main requirements such as optimality, distributed implementation, multiple path routing, and per-hop error performance. The method represents a cross-layer approach where we include scheduling in the constraint set of a joint routing and power control optimization problem. Apart from the mathematical framework, the main contribution is a routing and power control decomposition (RPCD) algorithm. For verification, we compare the RPCD algorithm with state-of-art dual decomposition for wireless mesh backhaul networks. Impressive convergence results indicate that the RPCD algorithm calculates the optimum solution in one decomposition step only.

Published in:

Global Telecommunications Conference, 2007. GLOBECOM '07. IEEE

Date of Conference:

26-30 Nov. 2007