Cart (Loading....) | Create Account
Close category search window
 

The Kernel Least-Mean-Square Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Weifeng Liu ; Univ. of Florida, Gainesville ; Pokharel, P.P. ; Principe, J.C.

The combination of the famed kernel trick and the least-mean-square (LMS) algorithm provides an interesting sample-by-sample update for an adaptive filter in reproducing kernel Hilbert spaces (RKHS), which is named in this paper the KLMS. Unlike the accepted view in kernel methods, this paper shows that in the finite training data case, the KLMS algorithm is well posed in RKHS without the addition of an extra regularization term to penalize solution norms as was suggested by Kivinen [Kivinen, Smola and Williamson, ldquoOnline Learning With Kernels,rdquo IEEE Transactions on Signal Processing, vol. 52, no. 8, pp. 2165-2176, Aug. 2004] and Smale [Smale and Yao, ldquoOnline Learning Algorithms,rdquo Foundations in Computational Mathematics, vol. 6, no. 2, pp. 145-176, 2006]. This result is the main contribution of the paper and enhances the present understanding of the LMS algorithm with a machine learning perspective. The effect of the KLMS step size is also studied from the viewpoint of regularization. Two experiments are presented to support our conclusion that with finite data the KLMS algorithm can be readily used in high dimensional spaces and particularly in RKHS to derive nonlinear, stable algorithms with comparable performance to batch, regularized solutions.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 2 )

Date of Publication:

Feb. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.