By Topic

Informed Choice of the LMS Parameters in Super-Resolution Video Reconstruction Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Costa, G.H. ; Univ. of Caxias do Sul, Caxias do Sul ; Bermudez, J.C.M.

Super-resolution reconstruction of image sequences is highly dependent on data outliers and on the quality of the motion estimation. This paper addresses the design of the least mean square algorithm applied to super-resolution reconstruction (LMS-SRR). Based on a statistical model for the algorithm behavior, we propose a design strategy to reduce the effects of outliers on the reconstructed image sequence. We show that the proposed strategy leads the algorithm to a close-to-optimum performance in both the transient and the steady-state phases of adaptation in practical situations in which registration errors occur. The analysis also shows that lower values of the step size do not necessarily lead to a better steady-state mean-square error, differently from the traditional LMS behavior.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 2 )